SUMMARY OF PRODUCT CHARACTERISTICS

1. NAME OF MEDICINAL PRODUCT

Glucose Intravenous Infusion 5% w/v

2. QUALITATIVE AND QUANTITATIVE COMPOSITION

Each 100ml contains 5g Glucose (as anhydrous)

Water for injections q.s to 100ml

For the full list of excipients: see section 6.1

3. PHARMACEUTICAL FORM

Solution for infusion Clear solution, free from visible particles.

4. CLINICAL PARTICULARS

4.1.Therapeutic Indications

Glucose 5% intravenous infusion is indicated for:

- Treatment of carbohydrate and fluid depletion
- as a vehicle and diluent for compatible medicinal products for parenteral administration.

4.2. Posology and method of administration

Posology

Adults, older people and children:

The concentration and dosage of Glucose 5% intravenous infusion is determined by several factors including the age, weight and clinical condition of the patient. Serum-glucose concentrations may need to be carefully monitored.

Fluid balance, serum glucose, serum sodium and other electrolytes should be monitored before and during administration, especially in patients with increased non-osmotic vasopressin release (syndrome of inappropriate antidiuretic hormone secretion, SIADH) and in patients co-medicated with vasopressin agonist drugs due to the risk of hyponatraemia. Monitoring of serum sodium is particularly important for physiologically hypotonic fluids;

Some products may become extremely hypotonic after administration due to glucose metabolization in the body (see sections 4.4, 4.5 and 4.8).

The recommended dosage for treatment of carbohydrate and fluid depletion is:

- for adults: 500 ml to 3 litres / 24h

- for babies and children:

0-10 kg body	00 ml/kg/24h.
weight: 10-20 kg	000 ml + 50 ml /kg over 10 kg /
body weight:	24h. 500 ml + 20 ml / kg over 20
> 20 kg body weight:	kg / 24h.

The infusion rate depends on the patient's clinical condition.

Infusion rate should not exceed the patient's glucose oxidation capacities in order to avoid hyperglycaemia. Therefore, the maximum dose ranges from 5mg/kg/min for adults to 10-18 mg/kg/minfor babies and children depending on the age and the total body mass.

The recommended dosage when used as a vehicle or diluent ranges from 50 to 250 ml per dose of medicinal product to be administered.

When Glucose 5% is used as a diluent for injectable preparations of other drugs, the dosage and the infusion rate will be principally dictated by the nature and the dose regimen of the prescribed drug.

Paediatric population

The infusion rate and volume depend on the age, weight clinical and metabolic conditions of the patient, concomitant therapy and should be determined by the consulting physician experienced inpaediatric intravenous fluid therapy.

Method of administration:

The solution is for administration by intravenous infusion (peripheral or central vein).

When the solution is used for dilution and delivery of therapeutic additives for administration by intravenous infusion, the direction for use with additive therapeutic substances will dictate the appropriate volumes for each therapy.

Glucose 5% intravenous infusion is an isosmotic solution.

Please see section 3 for the information about the osmolarity of the solution.

Precautions to be taken before handling or administering the medicinal product

Parenteral drug products should be inspected visually for particulate matter and discoloration prior to administration, whenever solution and container permit. Use only if the solution is clear, without visible particles and the container is undamaged. Administer immediately following the insertion of infusion set.

The solution should be administered with sterile equipment using aseptic technique. The equipmentshould be primed with the solution in order to prevent air entering the system. Electrolyte supplementation may be indicated according to the clinical needs of the patient. Additivesmay be introduced before or during infusion through the injection site.

When introducing additives, the final osmolarity of solutions need to be checked. Administration of hyperosmolar solutions may cause venous irritation and phlebitis. Thorough and careful aseptic mixing of any additive is mandatory. Solutions containing additives should be used immediately and not stored. Please see section 4.4 for the risk of air embolism.

4.3.Contraindications

The solution is contraindicated in case of uncompensated diabetes, other known glucose intolerances (such as metabolic stress situations), hyperosmolar coma, hyperglycaemia, hyperlactataemia.

Hypersensitivity to the active substance. See sections 4.4 and 4.8 for corn allergies.

4.4.Special warnings and precautions for use

Glucose intravenous infusions are usually isotonic solutions. In the body, however, glucose containing fluids can become extremely physiologically hypotonic due to rapid glucose metabolization (see section 4.2)

Dilution and other effects on serum electrolytes

Depending on the tonicity of the solution, the volume and rate of infusion and depending on a patient's underlying clinical condition and capability to metabolize glucose, intravenous administration of glucose can cause:

- Hyperosmolality, osmotic diuresis and dehydration
- Hypoosmolality
- Electrolyte disturbances such as
 - hypo- or hyperosmotic hyponatraemia (see below),
 - hypokalaemia,
 - hypophosphataemia,
 - hypomagnesaemia,
 - overhydration/hypervolaemia and, for example, congested states, including pulmonarycongestion and oedema.

The above effects do not only result from the administration of electrolyte-free fluid but also fromglucose administration.

Hyponatraemia:

Patients with non-osmotic vasopressin release (e.g., in acute illness, pain, post-operative stress, infections, burns, and CNS diseases), patients with heart-, liver- and kidney diseases and patients exposed to vasopressin agonists (see section 4.5) are at particular risk of acute hyponatraemia uponinfusion of hypotonic fluids.

Acute hyponatraemia can lead to acute hyponatraemic encephalopathy (brain oedema) characterized by headache, nausea, seizures, lethargy and vomiting. Patients with brain oedema are at particular riskof severe, irreversible and life-threatening brain injury.

Children, women in the fertile age and patients with reduced cerebral compliance (e.g., meningitis, intracranial bleeding, and cerebral contusion) are at particular risk of the severe and life-threateningbrain swelling caused by acute hyponatraemia.

Clinical evaluation and periodic laboratory determinations may be necessary to monitor changes in fluid balance, electrolyte concentrations, and acid-base balance during prolonged parenteral therapy or whenever the condition of the patient or the rate of administration warrants such evaluation.

Particular caution is advised in patients at increased risk of water and electrolyte disturbances that could be aggravated by increased free water load, hyperglycaemia or possibly required insulin administration (see below).

<u>Hyperglycaemia</u>

• Rapid administration of glucose solutions may produce substantial hyperglycaemia and a hyperosmolar syndrome.

• If hyperglycaemia occurs, rate of infusion should be adjusted and/or insulin administered

- If necessary, provide parenteral supplements in potassium.
- Intravenous Glucose 5% should be administered with caution in patients with, for example:

- impaired glucose tolerance (such as in diabetes mellitus, renal failure, or in the presence of sepsis,trauma, or shock),

- severe malnutrition (risk of precipitating a refeeding syndrome - see below),

- thiamine deficiency, e.g., in patients with chronic alcoholism (risk of severe lactic acidosis due to impaired oxidative metabolization of pyruvate), patients with ischemic stroke or severe traumatic brain injury

Avoid infusion within the first 24 hours following head trauma. Monitor blood glucose closely as early hyperglycaemia has been associated with poor outcomes in patients with severe traumatic braininjury.

- newborns

Effects on Insulin Secretion

Prolonged intravenous administration of glucose and associated hyperglycaemia may result indecreased rates of glucose-stimulated insulin secretion.

Hypersensitivity Reactions

• Hypersensitivity/infusion reactions, including anaphylactic/anaphylactoid reactions, have been reported with Glucose solutions (see section 4.8). Solutions containing glucose should therefore be used with caution, if at all, in patients with known allergy to corn or corn products (see section 4.3).

• The infusion must be stopped immediately if any signs or symptoms of a suspected hypersensitivity reaction develop. Appropriate therapeutic countermeasures must be instituted as clinically indicated.

Refeeding syndrome

• Refeeding severely undernourished patients may result in the refeeding syndrome that is characterized by the shift of potassium, phosphorus, and magnesium intracellularly as the patient becomes anabolic. Thiamine deficiency and fluid retention may also develop. Careful monitoring and slowly increasing nutrient intakes while avoiding overfeeding can prevent these complications.

Paediatric population

The infusion rate and volume depend on the age, weight, clinical and metabolic conditions of the patient, concomitant therapy, and should be determined by a consulting physician experienced inpaediatric intravenous fluid therapy.

In order to avoid potentially fatal over infusion of intravenous fluids to the neonate, special attention needs to be paid to the method of administration. When using a syringe pump to administer intravenous fluids or medicines to neonates, a bag of fluid should not be left connected to the syringe.

When using an infusion pump all clamps on the intravenous administration set must be closed before removing the administration set from the pump or switching the pump off. This is required regardless of whether the administration set has an anti-free flow device.

The intravenous infusion device and administration equipment must be frequently monitored. <u>Paediatric glycaemia-related issues</u>

Newborns – especially those born premature and with low birth weight - are at increased risk of developing hypo- or hyperglycaemia and therefore need close monitoring during treatment with intravenous glucose solutions to ensure adequate glycaemic control in order to avoid potential long term adverse effects. Hypoglycaemia in the newborn can cause prolonged seizures, coma and cerebralinjury. Hyperglycaemia has been associated with intraventricular haemorrhage, late onset bacterial and fungal infection, retinopathy of prematurity, necrotizing enterocolitis, bronchopulmonary dysplasia, prolonged length of hospital stays, and death.

Paediatric hyponatraemia-related issues

• Children (including neonates and older children) are at increased risk of developing hypoosmotichyponatraemia as well as for developing hyponatraemic encephalopathy.

• Plasma electrolyte concentrations should be closely monitored in the paediatric population.

• Rapid correction of hypoosmotic hyponatraemia is potentially dangerous (risk of serious neurologiccomplications).

• Dosage, rate, and duration of administration should be determined by a physician experienced inpaediatric intravenous fluid therapy.

Geriatric Use

• When selecting the type of infusion solution and the volume/rate of infusion for a geriatric patient, consider that geriatric patients are generally more likely to have cardiac, renal, hepatic, and other diseases or concomitant drug therapy.

<u>Blood</u>

• Glucose 5% (an aqueous, i.e., electrolyte-free glucose solution) should not be administered simultaneously with, before or after an administration of blood through the same infusion equipment, because haemolysis and pseudo agglutination can occur.

Adding other medication or using an incorrect administration technique might cause the appearance offever reactions due to the possible introduction of pyrogens. In case of adverse reaction, infusion mustbe stopped immediately.

Risk of Air Embolism

• Do not use plastic containers in series connections. Such use could result in air embolism due to residual air being drawn from the primary container before the administration of the fluid from thesecondary container is completed.

• Pressurizing intravenous solutions contained in flexible plastic containers to increase flow rates canresult in air embolism if the residual air in the container is not fully evacuated prior to administration.

• Use of a vented intravenous administration set with the vent in the open position could result in air embolism. Vented intravenous administration sets with the vent in the open position should not be used with flexible plastic containers.

4.5. Interaction with other medicinal products and other forms of interaction

Both the glycaemic effects of Glucose 5% and its effects on water and electrolyte balance should be taken into account when using Glucose 5% in patients treated with other substances that affect glycaemic control, or fluid and/or electrolyte balance.

Concomitant administration of catecholamines and steroids decreases the glucose up-take.

Drugs leading to an increased vasopressin effect

The below listed drugs increase the vasopressin effect, leading to reduced renal electrolyte free water excretion and increase the risk of hospital acquired hyponatraemia following inappropriately balancedtreatment with IV fluids (see sections 4.2, 4.4 and 4.8).

- Drugs stimulating vasopressin release, e.g.: Chlorpropamide, clofibrate, carbamazepine, vincristine, selective serotonin reuptake inhibitors, 3.4-methylenedioxy-N-methamphetamine, ifosfamide, antipsychotics, narcotics
- Drugs potentiating vasopressin action, e.g.: Chlorpropamide, NSAIDs, cyclophosphamide
- Vasopressin analogues, e.g.: Desmopressin, oxytocin, terlipressin
- Other medicinal products increasing the risk of hyponatraemia also include diuretics ingeneral and antiepileptics such as oxcarbazepine.
- No interaction studies have been performed.

4.6.Fertility, pregnancy and lactation

When a medicinal product is added, the nature of the drug and its use during pregnancy and lactationhave to be considered separately.

Intrapartum maternal intravenous glucose infusion may result in foetal insulin production, with an associated risk of foetal hyperglycaemia and metabolic acidosis as well as rebound hypoglycaemia in theneonate.

Pregnancy

Glucose solution can be used during pregnancy. However, caution should be exercised when glucosesolution is used intrapartum.

Glucose 5% should be administrated with special caution for pregnant women during labour particularly if administered in combination with oxytocin due to the risk of hyponatraemia (see section 4.4, 4.5 and 4.8).

Fertility

There are no adequate data of the effect of Glucose 5% on fertility. However, no effect on fertility is expected.

Lactation

There are no adequate data of using Glucose solution during lactation. However, no effect on lactation is expected. Glucose 5% can be used during lactation.

4.7.Effects on ability to drive and use machines

None known

4.8.Undesirable effects

Undesirable effects which occurred in patients treated with Glucose 5% from the postmarketingexperience are tabulated below.

The adverse drug reactions listed in this section are given following the recommended frequency convention: very common ($\geq 1/10$); common ($\geq 1/100$ to < 1/10); uncommon ($\geq 1/1000$ to < 1/100); rare ($\geq 1/10,000$ to < 1/1,000); very rare (< 1/10,000); and not known (cannot be estimated from the availabledata).

System Organ Class(SOC)	Adverse reactions (Preferred Term)	Frequency
Immune system disorders	Anaphylactic reaction* Hypersensitivity*	Not known
Metabolism and nutrition disorders	Electrolyte imbalance Hypokalaemia Hypomagnesaemi a Hypophosphatemi a Hyperglycaemia Dehydration Hypervolaemia Hospital acquired hyponatraemia**	Not known
Nervous system disorders	Hyponatraemic encephalopathy**	Not known
Skin and subcutaneous tissue disorders	Rash	Not known

Vascular disorders	Venous thrombosis Phlebitis	Not known
Renal and urinary disorders	Polyuria	Not known
General disorders andadministration site conditions	Chills* Pyrexi a* Infusion site infection Infusion site irritation for example erythemaExtravasation Local reaction Pain localised	Not known

*Potential manifestation in patients with allergy to corn, see section 4.4.

** Hospital acquired hyponatraemia may cause irreversible brain injury and death due to development f acute hyponatraemic encephalopathy (see sections 4.2 and 4.4).

Reporting of suspected adverse reactions

It's crucial to report any possible adverse reactions; It enables ongoing evaluation of the pharmaceuticalproduct's benefit/risk ratio.

Healthcare professionals are asked to report any suspected adverse reactions via the **TMDA** yellowforms.

4.8 Overdose

Prolonged administration or rapid infusion of large volumes of Glucose 5% may cause hyperosmolarity and hyponatraemia, dehydration, hyperglycaemia, hyperglycosuria, osmotic diuresis (due to the hyperglycaemia) and water intoxication and oedema. Severe hyperglycaemia and hyponatraemia may be fatal (see sections 4.4 and 4.8).

In case of suspected overdose, treatment with Glucose 5% must be stopped immediately. Managementof overdose is symptomatic and supportive, with appropriate monitoring.

5. PHARMACOLOGICAL PROPERTIES

5.1.Pharmacodynamic properties

Pharmacotherapeutic group: "Other IV Solution Additives" ATC code: B05BA03

The pharmacodynamic properties of this solution are those of glucose, which forms the principal source of energy in cellular metabolism. Glucose 5% is given as a source of carbohydrate in parenteral nutrition. The Glucose 5% solution provides a caloric intake of 200 kcal/l. Furthermore, this glucose solution for infusion allows hydric supplementation without ionic supplementation.

Glucose 5% is an isosmotic solution, with an approximate osmolarity of 278 mOsm/l. The pharmacodynamics of the additive will depend on the nature of the drug used.

5.2.Pharmacokinetic properties

Glucose is metabolized via pyruvic or lactic acid to carbon dioxide and water with the release of energy.

The pharmacokinetics of the additive will depend on the nature of the drug used.

5.3.Pre-clinical safety data

The safety of glucose in animals is not relevant in view of its presence as a normal component inanimal and human plasma.

The safety of the additive should be considered separately.

6. PHARMACEUTICAL PARTICULARS

6.1 List of excipients

Water For Injections

6.2 Incompatibilities

As with all parenteral solutions compatibility of the additives with the solution must be assessed before addition.

It is the responsibility of the physician to judge the incompatibility of an additive medication with the Glucose 5% solution by checking for eventual colour change and/or eventual precipitate, insoluble complexes or crystals apparition. The Instructions for Use of the medication to be added must be consulted.

Before adding a drug, verify it is soluble and stable in water at the pH of Glucose 5%.

When a compatible medication is added to the Glucose 5%, the solution must be administered immediately.

Those additives known to be incompatible should not be used

6.3 Shelf life

12 months

6.4 Special precautions for storage

Do not store above 30°C. Protect from Sunlight

For Intravenous use only

6.5 Nature and contents of container

Polypropylene bottle with an infusion site, or injection site for addition of medicinal products; The bottles are individually overwrapped in transparent Biaxially Oriented Polypropylene Film Bottles contain 500ml solution.

6.6 Special precautions for disposal and other handling

Discard any unused portion.

Do not store solutions containing additives. Do not reconnect partially used bags. Do not remove unit from overwrap until ready for use. The inner bag maintains the sterility of theproduct.

When introducing additives to Glucose 5% solution aseptic technique must be used. Mix the solution thoroughly when additives have been introduced.

7. MARKET AUTHORIZATION HOLDER

Alfa Pharmaceuticals Limited Plot No. 14 Mbagala Industrial Area P.O BOX 5804 Dar es salaam

8. MARKETING AUTHORIZATION NUMBER

TAN 22 HM 0467

9. DATE OF FIRST AUTHORIZATION/ RENEWAL OF AUTHORIZATION

31st October, 2022

10. DATE OF REVISION OF TEXT