#### SUMMARY OF PRODUCT CHARACTERISTICS

#### 1. NAME OF THE MEDICINAL PRODUCT

VALSAR HT 160/25 (Valsaran and Hydrochlorothiazide Tablets USP 160/25 mg)

#### 2. QUALITATIVE AND QUANTITATIVE COMPOSITION

Each film-coated tablet contains Valsartan, USP 160 mg

Hydrochlorothiazide, USP 25 mg

**Excipients:** The excipients such as Microcrystalline Cellulose (Vivapur 102), Crospovidone (Kollidon CL), Magnesium Stearate, Colloidal Silicon Dioxide (Aerosil 200), Opadry Brown 02F5565012 and Purified water.

### 3. PHARMACEUTICAL FORM

Dosage form: Film coated

tablet

**Description:** Brownish Orange colored, Oval, biconvex, film coated tablets debossed with H on

one side

and 'V8' on the other side with score line.

#### 4. CLINICAL PARTICULARS

### 4.1. The rapeutic indications

Treatment of essential hypertension in adults.

Valsartan and hydrochlorothiazide Tablet USP 160/12.5 mg fixed-dose combination is indicated in patients whose blood pressure is not adequately controlled on valsartan or hydrochlorothiazide monotherapy.

## 4.2. Posology and method of administration

## **Posology**

The recommended dose of Valsartan and hydrochlorothiazide Tablet USP 160/12.5 mg is one film-coated tablet once daily. Dose titration with the individual components is recommended. In each case, up-titration of individual components to the next dose should be followed in order to reduce the risk of hypotension and other adverse events.

When clinically appropriate direct change from monotherapy to the fixed combination may be considered in patients whose blood pressure is not adequately controlled on valsartan or hydrochlorothiazide monotherapy, provided the recommended dose titration sequence for the individual components is followed.

The clinical response to Valsartan and hydrochlorothiazide Tablet USP 160/12.5 mg should be

evaluated after initiating therapy and if blood pressure remains uncontrolled, the dose may be increased by increasing either one of the components to a maximum dose of Valsartan and hydrochlorothiazide Tablet USP 320 mg/25 mg.

The antihypertensive effect is substantially present within 2 weeks.

In most patients, maximal effects are observed within 4 weeks. However, in some patients, 4-8 weeks treatment may be required. This should be taken into account during dose titration.

Method of administration

Valsartan and hydrochlorothiazide Tablet USP 160/12.5 mg can be taken with or without food and should be administered with water.

## Special populations

### Patients with renal impairment

No dose adjustment is required for patients with mild to moderate renal impairment (Glomerular Filtration Rate (GFR)  $\geq$  30 ml/min). Due to the hydrochlorothiazide component, Valsartan and hydrochlorothiazide Tablet USP 160/12.5 mg is contraindicated in patients with severe renal impairment (GFR < 30 mL/min) and anuria (see sections 4.3, 4.4 and 5.2).

### Patients with hepatic impairment

In patients with mild to moderate hepatic impairment without cholestasis the dose of valsartan should not exceed 80 mg (see section 4.4). No adjustment of the hydrochlorothiazide dose is required for patients with mild to moderate hepatic impairment. Due to the valsartan component, Valsartan and hydrochlorothiazide Tablet USP 160/12.5 mg is contraindicated in patients with severe hepatic impairment or with biliary cirrhosis and cholestasis.

#### Older people

No dose adjustment is required in elderly patients.

### **Pediatric patients**

Valsartan and hydrochlorothiazide Tablet USP 160/12.5 mg is not recommended for use in children below the age of 18 years due to a lack of data on safety and efficacy.

#### 4.3. Contraindications

Valsartan and hydrochlorothiazide Tablet USP is contraindicated in patients who are hypersensitive to any component of this product.

Because of the hydrochlorothiazide component, this product is contraindicated in patients with anuria or hypersensitivity to other sulfonamide-derived drugs.

Do not coadminister aliskiren with Valsartan and hydrochlorothiazide Tablet USP in patients with diabetes [see Drug Interactions].

### 4.4. Special warnings and special precautions for use Fetal Toxicity

## Pregnancy Category D

Use of drugs that act on the renin-angiotensin system during the second and third trimesters of pregnancy reduces fetal renal function and increases fetal and neonatal morbidity and death. Resulting oligohydramnios can be associated with fetal lung hypoplasia and skeletal deformations. Potential neonatal adverse effects include skull hypoplasia, anuria, hypotension, renal failure, and death. When pregnancy is detected, discontinue Valsartan and hydrochlorothiazide Tablet USP as soon as possible [see Use in Specific Populations].

## **Hypotension in Volume- and/or Salt-Depleted Patients**

Excessive reduction of blood pressure was rarely seen (0.7%) in patients with uncomplicated hypertension treated with Valsartan and hydrochlorothiazide Tablet USP in controlled trials. In patients with an activated renin-angiotensin system, such as volume- and/or salt-depleted patients receiving high doses of diuretics, symptomatic hypotension may occur. This condition should be corrected prior to administration of Valsartan and hydrochlorothiazide Tablet USP, or the treatment should start under close medical supervision.

If hypotension occurs, the patient should be placed in the supine position and, if necessary, given an intravenous infusion of normal saline. A transient hypotensive response is not a contraindication to further treatment, which usually can be continued without difficulty once the blood pressure has stabilized.

### Impaired Renal Function

Changes in renal function including acute renal failure can be caused by drugs that inhibit the renin-angiotensin system and by diuretics. Patients whose renal function may depend in part on the activity of the renin-angiotensin system (e.g., patients with renal artery stenosis, chronic kidney disease, severe congestive heart failure, or volume depletion) may be at particular risk of developing acute renal failure on Valsartan and hydrochlorothiazide Tablet USP. Monitor renal function periodically in these patients. Consider withholding or discontinuing therapy in patients who develop a clinically significant decrease in renal function on Valsartan and hydrochlorothiazide Tablet USP [see Drug Interactions].

## **Hypersensitivity Reaction**

Hydrochlorothiazide: Hypersensitivity reactions to hydrochlorothiazide may occur in patients with or without a history of allergy or bronchial asthma, but are more likely in patients with such a history.

## Systemic Lupus Erythematosus

Hydrochlorothiazide: Thiazide diuretics have been reported to cause exacerbation or activation of systemic lupus erythematosus.

#### **Lithium Interaction**

Increases in serum lithium concentrations and lithium toxicity have been reported with concomitant use of valsartan or thiazide diuretics. Monitor lithium levels in patients receiving Valsartan and hydrochlorothiazide Tablet USP and lithium [see Drug Interactions].

#### **Potassium Abnormalities**

**Valsartan–Hydrochlorothiazide:** In the controlled trials of various doses of Valsartan and hydrochlorothiazide Tablet USP the incidence of hypertensive patients who developed hypokalemia (serum potassium <3.5 mEq/L) was 3.0%; the incidence of hyperkalemia (serum potassium >5.7 mEq/L) was 0.4%.

Hydrochlorothiazide can cause hypokalemia and hyponatremia. Hypomagnesemia can result in hypokalemia which appears difficult to treat despite potassium repletion. Drugs that inhibit the renin-angiotensin system can cause hyperkalemia. Monitor serum electrolytes periodically.

If hypokalemia is accompanied by clinical signs (e.g., muscular weakness, paresis, or ECG alterations), Valsartan and hydrochlorothiazide Tablet USP should be discontinued. Correction of hypokalemia and any coexisting hypomagnesemia is recommended prior to the initiation of thiazides.

Some patients with heart failure have developed increases in potassium with Valsartan and hydrochlorothiazide Tablet USP therapy. These effects are usually minor and transient, and they are more likely to occur in patients with pre-existing renal impairment. Dosage reduction and/or discontinuation of the diuretic and/or Valsartan and hydrochlorothiazide Tablet USP may be required [see Adverse Reactions].

## **Acute Myopia and Secondary Angle-Closure Glaucoma**

Hydrochlorothiazide, a sulfonamide, can cause an idiosyncratic reaction, resulting in acute transient myopia and acute angle-closure glaucoma. Symptoms include acute onset of decreased visual acuity or ocular pain and typically occur within hours to weeks of drug initiation. Untreated

acute angle-closure glaucoma can lead to permanent vision loss. The primary treatment is to discontinue hydrochlorothiazide as rapidly as possible. Prompt medical or surgical treatments may need to be considered if the intraocular pressure remains uncontrolled. Risk factors for developing acute angle-closure glaucoma may include a history of sulfonamide or penicillin allergy.

#### **Metabolic Disturbances**

### Hydrochlorothiazide

Hydrochlorothiazide may alter glucose tolerance and raise serum levels of cholesterol and triglycerides.

Hydrochlorothiazide may raise the serum uric acid level due to reduced clearance of uric acid and may cause or exacerbate hyperuricemia and precipitate gout in susceptible patients.

Hydrochlorothiazide decreases urinary calcium excretion and may cause elevations of serum calcium. Monitor calcium levels in patients with hypercalcemia receiving Valsartan and hydrochlorothiazide Tablet USP.

## 4.5.5 Interaction with other medicinal products and other forms of interaction

Valsartan-Hydrochlorothiazide:

Lithium: Increases in serum lithium concentrations and lithium toxicity have been reported during concomitant administration of lithium with angiotensin II receptor antagonists or thiazides. Monitor lithium levels in patients taking Valsartan and hydrochlorothiazide Tablet USP. Valsartan: No clinically significant pharmacokinetic interactions were observed when valsartan was coadministered with amlodipine, atenolol, cimetidine, digoxin, furosemide, glyburide, hydrochlorothiazide, or indomethacin. The valsartan-atenolol combination was more antihypertensive than either component, but it did not lower the heart rate more than atenolol alone.

Coadministration of valsartan and warfarin did not change the pharmacokinetics of valsartan or the time-course of the anticoagulant properties of warfarin.

CYP 450 Interactions: In vitro metabolism studies indicate that CYP 450 mediated drug interactions between valsartan and coadministered drugs are unlikely because of the low extent of metabolism [see Clinical Pharmacology].

Transporters: The results from an in vitro study with human liver tissue indicate that valsartan is a substrate of the hepatic uptake transporter OATP1B1 and the hepatic efflux transporter MRP2.

Coadministration of inhibitors of the uptake transporter (rifampin, cyclosporine) or efflux transporter (ritonavir) may increase the systemic exposure to valsartan.

Non-Steroidal Anti-Inflammatory Agents including Selective Cyclooxygenase-2 Inhibitors (COX- 2 Inhibitors): In patients who are elderly, volume-depleted (including those on diuretic therapy), or with compromised renal function, coadministration of NSAIDs, including selective COX-2 inhibitors, with angiotensin II receptor antagonists, including valsartan, may result in deterioration of renal function, including possible acute renal failure. These effects are usually reversible. Monitor renal function periodically in patients receiving valsartan and NSAID therapy.

The antihypertensive effect of angiotensin II receptor antagonists, including valsartan may be attenuated by NSAIDs including selective COX-2 inhibitors.

Potassium: Concomitant use of valsartan with other agents that block the renin-angiotensin system, potassium-sparing diuretics (e.g., spironolactone, triamterene, amiloride), potassium supplements, salt substitutes containing potassium or other drugs that may increase potassium levels (e.g., heparin) may lead to increases in serum potassium and in heart failure patients to increases in serum creatinine. If comedication is considered necessary, monitoring of serum potassium is advisable.

Dual Blockade of the Renin-Angiotensin System (RAS): Dual blockade of the RAS with angiotensin receptor blockers, ACE inhibitors, or aliskiren is associated with increased risks of hypotension, hyperkalemia, and changes in renal function (including acute renal failure) compared to monotherapy. Most patients receiving the combination of two RAS inhibitors do not obtain any additional benefit compared to monotherapy. In general, avoid combined use of RAS inhibitors. Closely monitor blood pressure, renal function, and electrolytes in patients on Valsartan and hydrochlorothiazide Tablet USP and other agents that affect the RAS.

Do not coadminister aliskiren with Valsartan and hydrochlorothiazide Tablet USP in patients with diabetes. Avoid use of aliskiren with Valsartan and hydrochlorothiazide Tablet USP in patients with renal impairment (GFR <60 mL/min).

Hydrochlorothiazide: When administered concurrently, the following drugs may interact with thiazide diuretics:

Antidiabetic Drugs (oral agents and insulin) - Dosage adjustment of the antidiabetic drug may be required.

Nonsteroidal Anti-inflammatory Drugs (NSAIDs and COX-2 selective inhibitors) - When Valsartan and hydrochlorothiazide Tablet USP and nonsteroidal anti-inflammatory agents are used concomitantly, the patient should be observed closely to determine if the desired effect of the diuretic is obtained.

Carbamazepine – May lead to symptomatic hyponatremia.

lon exchange resins: Staggering the dosage of hydrochlorothiazide and ion exchange resins (e.g., cholestyramine, colestipol) such that hydrochlorothiazide is administered at least 4 hours before or 4 to 6 hours after the administration of resins would potentially minimize the interaction [see Clinical Pharmacology].

Cyclosporine: Concomitant treatment with cyclosporine may increase the risk of hyperuricemia and gout-type complications.

#### **USE IN SPECIAL POPULATION**

Pregnancy

Pregnancy Category D

Use of drugs that act on the renin-angiotensin system during the second and third trimesters of pregnancy reduces fetal renal function and increases fetal and neonatal morbidity and death. Resulting oligohydramnios can be associated with fetal lung hypoplasia and skeletal deformations. Potential neonatal adverse effects include skull hypoplasia, anuria, hypotension, renal failure, and death. When pregnancy is detected, discontinue Valsartan and hydrochlorothiazide Tablet USP as soon as possible. These adverse outcomes are usually associated with use of these drugs in the second and third trimester of pregnancy. Most epidemiologic studies examining fetal abnormalities after exposure to antihypertensive use in the first trimester have not distinguished drugs affecting the renin-angiotensin system from other antihypertensive agents. Appropriate management of maternal hypertension during pregnancy is important to optimize outcomes for both mother and fetus.

In the unusual case that there is no appropriate alternative to therapy with drugs affecting the renin-angiotensin system for a particular patient, apprise the mother of the potential risk to the fetus. Perform serial ultrasound examinations to assess the intra-amniotic environment. If oligohydramnios is observed, discontinue Valsartan and hydrochlorothiazide Tablet USP, unless it is considered lifesaving for the mother. Fetal testing may be appropriate, based on the week of pregnancy. Patients and physicians should be aware, however, that oligohydramnios may not

appear until after the fetus has sustained irreversible injury. Closely observe infants with histories of in utero exposure to Valsartan and hydrochlorothiazide Tablet USP for hypotension, oliguria, and hyperkalemia [see Use in Specific Populations].

## Hydrochlorothiazide

Thiazides can cross the placenta, and concentrations reached in the umbilical vein approach those in the maternal plasma. Hydrochlorothiazide, like other diuretics, can cause placental hypoperfusion. It accumulates in the amniotic fluid, with reported concentrations up to 19 times higher than in umbilical vein plasma. Use of thiazides during pregnancy is associated with a risk of fetal or neonatal jaundice or thrombocytopenia. Since they do not prevent or alter the course of EPH (Edema, Proteinuria, Hypertension) gestosis (pre-eclampsia), these drugs should not be used to treat hypertension in pregnant women. The use of hydrochlorothiazide for other indications (e.g., heart disease) in pregnancy should be avoided.

#### **Nursing Mothers**

It is not known whether valsartan is excreted in human milk. Valsartan was excreted into the milk of lactating rats; however, animal breast milk drug levels may not accurately reflect human breast milk levels. Hydrochlorothiazide is excreted in human breast milk. Because many drugs are excreted into human milk and because of the potential for adverse reactions in nursing infants from Valsartan and hydrochlorothiazide Tablet USP, a decision should be made whether to discontinue nursing or discontinue the drug, taking into account the importance of the drug to the mother.

#### **Pediatric Use**

Safety and effectiveness of Valsartan and hydrochlorothiazide Tablet USP in pediatric patients have not been established.

Neonates with a history of in utero exposure to Valsartan and hydrochlorothiazide Tablet USP:

If oliguria or hypotension occurs, direct attention toward support of blood pressure and renal perfusion. Exchange transfusions or dialysis may be required as a means of reversing hypotension and/or substituting for disordered renal function.

## Geriatric Use

In the controlled clinical trials of Valsartan and hydrochlorothiazide Tablet USP, 764 (17.5%) patients treated with valsartan-hydrochlorothiazide were ≥65 years and 118 (2.7%) were

≥75 years. No overall difference in the efficacy or safety of valsartan-hydrochlorothiazide was

observed between these patients and younger patients, but greater sensitivity of some older individuals cannot be ruled out.

Renal Impairment

Safety and effectiveness of Valsartan and hydrochlorothiazide Tablet USP in patients with severe renal impairment (CrCl ≤30 mL/min) have not been established. No dose adjustment is required in patients with mild (CrCl 60 to 90 mL/min) or moderate (CrCl 30 to 60 mL/min) renal impairment. Hepatic Impairment

Valsartan

No dose adjustment is necessary for patients with mild-to-moderate liver disease. No dosing recommendations can be provided for patients with severe liver disease.

Hydrochlorothiazide

Minor alterations of fluid and electrolyte balance may precipitate hepatic coma in patients with impaired hepatic function or progressive liver disease.

## 4.6. Fertility, Pregnancy and lactation

Valsartan-Hydrochlorothiazide: Limited data are available related to overdosage in humans. The most likely manifestations of overdosage would be hypotension and tachycardia; bradycardia could occur from parasympathetic (vagal) stimulation. Depressed level of consciousness, circulatory collapse and shock have been reported. If symptomatic hypotension should occur, supportive treatment should be instituted.

Valsartan is not removed from the plasma by dialysis.

The degree to which hydrochlorothiazide is removed by hemodialysis has not been established. The most common signs and symptoms observed in patients are those caused by electrolyte depletion (hypokalemia, hypochloremia, hyponatremia) and dehydration resulting from excessive diuresis. If digitalis has also been administered, hypokalemia may accentuate cardiac arrhythmias. In rats and marmosets, single oral doses of valsartan up to 1524 and 762 mg/kg in combination with hydrochlorothiazide at doses up to 476 and 238 mg/kg, respectively, were very well tolerated without any treatment-related effects. These no adverse effect doses in rats and marmosets, respectively, represent 46.5 and 23 times the maximum recommended human dose (MRHD) of valsartan and 188 and 113 times the MRHD of hydrochlorothiazide on a mg/m2 basis. (Calculations assume an oral dose of 320 mg/day valsartan in combination with 25 mg/day hydrochlorothiazide and a 60-kg patient.)

Valsartan: Valsartan was without grossly observable adverse effects at single oral doses up to 2000 mg/kg in rats and up to 1000 mg/kg in marmosets, except for salivation and diarrhea in the rat and vomiting in the marmoset at the highest dose (60 and 31 times, respectively, the MRHD on a mg/m2 basis). (Calculations assume an oral dose of 320 mg/day and a 60-kg patient.) Hydrochlorothiazide: The oral LD50 of hydrochlorothiazide is greater than 10 g/kg in both mice and rats, which represents 2027 and 4054 times, respectively, the MRHD on a mg/m2 basis. (Calculations assume an oral dose of 25 mg/day and a 60-kg patient.)

## 4.7. Effects on ability to drive and use machines

Adverse drug reactions reported in clinical trials and laboratory findings occurring more frequently with valsartan plus hydrochlorothiazide versus placebo and individual postmarketing reports are presented below according to system organ class. Adverse drug reactions known to occur with each component given individually but which have not been seen in clinical trials may occur during treatment with valsartan/ hydrochlorothiazide.

### 4.8.Undesirable effects

## **Clinical Trials Experience**

Because clinical studies are conducted under widely varying conditions, adverse reactions rates observed in the clinical studies of a drug cannot be directly compared to rates in the clinical studies of another drug and may not reflect the rates observed in practice. The adverse reaction information from clinical trials does, however, provide a basis for identifying the adverse events that appear to be related to drug use and for approximating rates

## **Hypertension**

Valsartan and hydrochlorothiazide Tablet USP has been evaluated for safety in more than 5700 patients, including over 990 treated for over 6 months, and over 370 for over 1 year. Adverse experiences have generally been mild and transient in nature and have only infrequently required discontinuation of therapy. The overall incidence of adverse reactions with Valsartan and hydrochlorothiazide Tablet USP was comparable to placebo.

The overall frequency of adverse reactions was neither dose-related nor related to gender, age, or race. In controlled clinical trials, discontinuation of therapy due to side effects was required in 2.3% of valsartan-hydrochlorothiazide patients and 3.1% of placebo patients. The most common reasons for discontinuation of therapy with Valsartan and hydrochlorothiazide Tablet USP were headache and dizziness.

The only adverse reaction that occurred in controlled clinical trials in at least 2% of patients treated with Valsartan and hydrochlorothiazide Tablet USP and at a higher incidence in valsartan-hydrochlorothiazide (n=4372) than placebo (n=262) patients was nasopharyngitis (2.4% vs. 1.9%). Dose-related orthostatic effects were seen in fewer than 1% of patients. In individual trials, a dose- related increase in the incidence of dizziness was observed in patients treated with Valsartan and hydrochlorothiazide Tablet USP.

Other adverse reactions that have been reported with valsartan-hydrochlorothiazide (>0.2% of valsartan-hydrochlorothiazide patients in controlled clinical trials) without regard to causality, are listed below:

Cardiovascular: Palpitations and tachycardia

Ear and Labyrinth: Tinnitus and vertigo

Gastrointestinal: Dyspepsia, diarrhea, flatulence, dry mouth, nausea, abdominal pain, abdominal

pain upper, and vomiting

General and Administration Site Conditions: Asthenia, chest pain, fatigue, peripheral edema

and pyrexia

Infections and Infestations: Bronchitis, bronchitis acute, influenza, gastroenteritis, sinusitis,

upper respiratory tract infection, and urinary tract infection

Investigations: Blood urea increased

Musculoskeletal: Arthralgia, back pain, muscle cramps, myalgia, and pain in extremity

Nervous System: Dizziness postural, paresthesia, and

somnolence Psychiatric: Anxiety and insomnia

Renal and Urinary: Pollakiuria

Reproductive System: Erectile dysfunction

Respiratory, Thoracic and Mediastinal: Dyspnea, cough, nasal congestion, pharyngolaryngeal

pain, and sinus congestion

Skin and Subcutaneous Tissue: Hyperhidrosis and rash

Vascular: Hypotension

Other reported reactions seen less frequently in clinical trials included abnormal vision, anaphylaxis, bronchospasm, constipation, depression, dehydration, decreased libido, dysuria, epistaxis, flushing, gout, increased appetite, muscle weakness, pharyngitis, pruritus, sunburn, syncope, and viral infection.

Initial Therapy-Hypertension

In a clinical study in patients with severe hypertension (diastolic blood pressure ≥110 mmHg and systolic blood pressure ≥140 mmHg), the overall pattern of adverse reactions reported through 6 weeks of follow-up was similar in patients treated with Valsartan and hydrochlorothiazide Tablet USP as initial therapy and in patients treated with valsartan as initial therapy. Comparing the groups treated with Valsartan and hydrochlorothiazide Tablet USP (force-titrated to 320/25 mg) and valsartan (force-titrated to 320 mg), dizziness was observed in 6% and 2% of patients, respectively. Hypotension was observed in 1% of those patients receiving Valsartan and hydrochlorothiazide Tablet USP and 0% of patients receiving valsartan. There were no reported cases of syncope in either treatment group. Laboratory changes with Valsartan and hydrochlorothiazide Tablet USP as initial therapy in patients with severe hypertension were similar to those reported with Valsartan and hydrochlorothiazide Tablet USP in patients with less severe hypertension [see Clinical Studies and Drug Interactions].

**Valsartan:** In trials in which valsartan was compared to an ACE inhibitor with or without placebo, the incidence of dry cough was significantly greater in the ACE inhibitor group (7.9%) than in the groups who received valsartan (2.6%) or placebo (1.5%). In a 129-patient trial limited to patients who had had dry cough when they had previously received ACE inhibitors, the incidences of cough in patients who received valsartan, hydrochlorothiazide, or lisinopril were 20%, 19%, 69% respectively (p <0.001).

Other reported reactions seen less frequently in clinical trials included chest pain, syncope, anorexia, vomiting, and angioedema.

**Hydrochlorothiazide:** Other adverse reactions not listed above that have been reported with hydrochlorothiazide, without regard to causality, are listed below:

Body As A Whole: weakness

**Digestive:** pancreatitis, jaundice (intrahepatic cholestatic jaundice), sialadenitis, cramping, gastric irritation

**Hematologic**: aplastic anemia, agranulocytosis, leukopenia, hemolytic anemia, thrombocytopenia **Hypersensitivity**: purpura, photosensitivity, urticaria, necrotizing angiitis (vasculitis and cutaneous vasculitis), fever, respiratory distress including pneumonitis and pulmonary edema, anaphylactic reactions

Metabolic: hyperglycemia, glycosuria, hyperuricemia

Musculoskeletal: muscle spasm

Nervous System/Psychiatric: restlessness

Renal: renal failure, renal dysfunction, interstitial nephritis

Skin: erythema multiforme including Stevens-Johnson syndrome, exfoliative dermatitis including

toxic epidermal necrolysis

Special Senses: transient blurred vision, xanthopsia

### **Clinical Laboratory Test Findings**

In controlled clinical trials, clinically important changes in standard laboratory parameters were rarely associated with administration of Valsartan and hydrochlorothiazide Tablet USP.

**Creatinine/Blood Urea Nitrogen (BUN):** Minor elevations in creatinine and BUN occurred in 2% and 15% respectively, of patients taking Valsartan and hydrochlorothiazide Tablet USP and 0.4% and 6% respectively, given placebo in controlled clinical trials

**Hemoglobin and Hematocrit**: Greater than 20% decreases in hemoglobin and hematocrit were observed in less than 0.1% of Valsartan and hydrochlorothiazide Tablet USP patients, compared with 0% in placebo-treated patients

**Liver Function Tests:** Occasional elevations (greater than 150%) of liver chemistries occurred in Valsartan and hydrochlorothiazide Tablet USP treated patients

**Neutropenia:** Neutropenia was observed in 0.1% of patients treated with Valsartan and hydrochlorothiazide Tablet USP and 0.4% of patients treated with placebo.

#### **Postmarketing Experience**

The following additional adverse reactions have been reported in valsartan or valsartan/ hydrochlorothiazide postmarketing experience. Because these reactions are reported voluntarily from a population of uncertain size, it is not always possible to reliably estimate their frequency or establish a causal relationship to drug exposure.

**Hypersensitivity:** There are rare reports of angioedema. Some of these patients previously experienced angioedema with other drugs including ACE inhibitors. Valsartan and hydrochlorothiazide Tablet USP should not be re-administered to patients who have had angioedema.

**Digestive:** Elevated liver enzymes and very rare reports of hepatitis

**Renal:** Impaired renal function

Clinical Laboratory Tests: Hyperkalemia

**Dermatologic:** Alopecia, bullous dermatitis

Vascular: Vasculitis

Nervous System: Syncope

Rare cases of rhabdomyolysis have been reported in patients receiving angiotensin II receptor

blockers.

## **Hydrochlorothiazide:**

The following additional adverse reactions have been reported in postmarketing experience with hydrochlorothiazide:

Acute renal failure, renal disorder, aplastic anemia, erythema multiforme, pyrexia, muscle spasm, asthenia, acute angle-closure glaucoma, bone marrow failure, worsening of diabetes control, hypokalemia, blood lipids increased, hyponatremia, hypomagnesemia, hyporalcemia, hypochloremic alkalosis, impotence, and visual impairment.

Pathological changes in the parathyroid gland of patients with hypercalcemia and hypophosphatemia have been observed in a few patients on prolonged thiazide therapy. If hypercalcemia occurs, further diagnostic evaluation is necessary

#### 4.9.Overdose

Valsartan-Hydrochlorothiazide: Limited data are available related to overdosage in humans. The most likely manifestations of overdosage would be hypotension and tachycardia; bradycardia could occur from parasympathetic (vagal) stimulation. Depressed level of consciousness, circulatory collapse and shock have been reported. If symptomatic hypotension should occur, supportive treatment should be instituted.

Valsartan is not removed from the plasma by dialysis.

The degree to which hydrochlorothiazide is removed by hemodialysis has not been established. The most common signs and symptoms observed in patients are those caused by electrolyte depletion (hypokalemia, hypochloremia, hyponatremia) and dehydration resulting from excessive diuresis. If digitalis has also been administered, hypokalemia may accentuate cardiac arrhythmias. In rats and marmosets, single oral doses of valsartan up to 1524 and 762 mg/kg in combination with hydrochlorothiazide at doses up to 476 and 238 mg/kg, respectively, were very well tolerated without any treatment-related effects. These no adverse effect doses in rats and marmosets, respectively, represent 46.5 and 23 times the maximum recommended human dose (MRHD) of valsartan and 188 and 113 times the MRHD of hydrochlorothiazide on a mg/m2 basis.

(Calculations assume an oral dose of 320 mg/day valsartan in combination with 25 mg/day hydrochlorothiazide and a 60-kg patient.)

**Valsartan:** Valsartan was without grossly observable adverse effects at single oral doses up to 2000 mg/kg in rats and up to 1000 mg/kg in marmosets, except for salivation and diarrhea in the rat and vomiting in the marmoset at the highest dose (60 and 31 times, respectively, the MRHD on a mg/m2 basis). (Calculations assume an oral dose of 320 mg/day and a 60-kg patient.) **Hydrochlorothiazide:** The oral LD50 of hydrochlorothiazide is greater than 10 g/kg in both mice and rats, which represents 2027 and 4054 times, respectively, the MRHD on a mg/m2 basis. (Calculations assume an oral dose of 25 mg/day and a 60-kg patient.)

#### 5. PHARMACOLOGICAL PROPERTIES

### 5.1.Pharmacodynamic

### properties Mechanism of Action

Angiotensin II is formed from angiotensin I in a reaction catalyzed by angiotensin-converting enzyme (ACE, kininase II). Angiotensin II is the principal pressor agent of the renin-angiotensin system, with effects that include vasoconstriction, stimulation of synthesis and release of aldosterone, cardiac stimulation, and renal reabsorption of sodium. Valsartan blocks the vasoconstrictor and aldosterone-secreting effects of angiotensin II by selectively blocking the binding of angiotensin II to the AT1 receptor in many tissues, such as vascular smooth muscle and the adrenal gland. Its action is therefore independent of the pathways for angiotensin II synthesis. There is also an AT2 receptor found in many tissues, but AT2 is not known to be associated with cardiovascular homeostasis. Valsartan has much greater affinity (about 20000-fold) for the AT1 receptor than for the AT2 receptor. The primary metabolite of valsartan is essentially inactive with an affinity for the AT1 receptor about one 200th that of valsartan itself.

Blockade of the renin-angiotensin system with ACE inhibitors, which inhibit the biosynthesis of angiotensin II from angiotensin I, is widely used in the treatment of hypertension. ACE inhibitors also inhibit the degradation of bradykinin, a reaction also catalyzed by ACE. Because valsartan does not inhibit ACE (kininase II) it does not affect the response to bradykinin. Whether this difference has clinical relevance is not yet known. Valsartan does not bind to or block other hormone receptors or ion channels known to be important in cardiovascular regulation.

Blockade of the angiotensin II receptor inhibits the negative regulatory feedback of angiotensin II on renin secretion, but the resulting increased plasma renin activity and angiotensin II circulating

levels do not overcome the effect of valsartan on blood pressure.

Hydrochlorothiazide is a thiazide diuretic. Thiazides affect the renal tubular mechanisms of electrolyte reabsorption, directly increasing excretion of sodium and chloride in approximately equivalent amounts. Indirectly, the diuretic action of hydrochlorothiazide reduces plasma volume, with consequent increases in plasma renin activity, increases in aldosterone secretion, increases in urinary potassium loss, and decreases in serum potassium. The renin-aldosterone link is mediated by angiotensin II, so coadministration of an angiotensin II receptor antagonist tends to reverse the potassium loss associated with these diuretics.

The mechanism of the antihypertensive effect of thiazides is unknown.

### **Pharmacodynamics**

**Valsartan:** Valsartan inhibits the pressor effect of angiotensin II infusions. An oral dose of 80 mg inhibits the pressor effect by about 80% at peak with approximately 30% inhibition persisting for 24 hours. No information on the effect of larger doses is available.

Removal of the negative feedback of angiotensin II causes a 2- to 3-fold rise in plasma renin and consequent rise in angiotensin II plasma concentration in hypertensive patients. Minimal decreases in plasma aldosterone were observed after administration of valsartan; very little effect on serum potassium was observed.

**Hydrochlorothiazide:** After oral administration of hydrochlorothiazide, diuresis begins within 2 hours, peaks in about 4 hours and lasts about 6 to 12 hours.

### **Drug Interactions**

### Hydrochlorothiazide:

Alcohol, barbiturates, or narcotics: Potentiation of orthostatic hypotension may occur.

Skeletal muscle relaxants: Possible increased responsiveness to muscle relaxants such as curare derivatives.

**Digitalis glycosides:** Thiazide-induced hypokalemia or hypomagnesemia may predispose the patient to digoxin toxicity.

### **5.2.Pharmacokinetic properties**

Valsartan: Valsartan peak plasma concentration is reached 2 to 4 hours after dosing. Valsartan shows bi-exponential decay kinetics following intravenous administration, with an average elimination half-life of about 6 hours. Absolute bioavailability for the capsule formulation is about 25% (range 10% to 35%). Food decreases the exposure (as measured by AUC) to valsartan by about 40% and peak plasma concentration (Cmax) by about 50%. AUC and Cmax values of valsartan increase approximately linearly with increasing dose over the clinical dosing range. Valsartan does not accumulate appreciably in plasma following repeated administration.

Hydrochlorothiazide: The estimated absolute bioavailability of hydrochlorothiazide after oral administration is about 70%. Peak plasma hydrochlorothiazide concentrations (Cmax) are reached within 2 to 5 hours after oral administration. There is no clinically significant effect of food on the bioavailability of hydrochlorothiazide.

Hydrochlorothiazide binds to albumin (40% to 70%) and distributes into erythrocytes. Following oral administration, plasma hydrochlorothiazide concentrations decline bi-exponentially, with a mean distribution half-life of about 2 hours and an elimination half-life of about 10 hours.

Valsartan and hydrochlorothiazide Tablet USP: Valsartan and hydrochlorothiazide Tablet USP may be administered with or without food.

#### Distribution

Valsartan: The steady state volume of distribution of valsartan after intravenous administration is small (17 L), indicating that valsartan does not distribute into tissues extensively. Valsartan is highly bound to serum proteins (95%), mainly serum albumin.

#### Metabolism

Valsartan: The primary metabolite, accounting for about 9% of dose, is valeryl 4-hydroxy valsartan. In vitro metabolism studies involving recombinant CYP 450 enzymes indicated that the CYP 2C9 isoenzyme is responsible for the formation of valeryl-4-hydroxy valsartan. Valsartan does not inhibit CYP 450 isozymes at clinically relevant concentrations. CYP 450 mediated drug interaction between valsartan and coadministered drugs are unlikely because of the low extent of metabolism.

Hydrochlorothiazide: Is not metabolized.

#### **Excretion**

Valsartan: Valsartan, when administered as an oral solution, is primarily recovered in feces (about 83% of dose) and urine (about 13% of dose). The recovery is mainly as unchanged drug, with only about 20% of dose recovered as metabolites.

Following intravenous administration, plasma clearance of valsartan is about 2 L/h and its renal clearance is 0.62 L/h (about 30% of total clearance).

Hydrochlorothiazide: About 70% of an orally administered dose of hydrochlorothiazide is eliminated in the urine as unchanged drug.

### **Special Populations**

Geriatric: Exposure (measured by AUC) to valsartan is higher by 70% and the half-life is longer by 35% in the elderly than in the young. A limited amount of data suggest that the systemic clearance of hydrochlorothiazide is reduced in both healthy and hypertensive elderly subjects compared to young healthy volunteers.

Gender: Pharmacokinetics of valsartan do not differ significantly between males and females. Race: Pharmacokinetic differences due to race have not been studied.

Renal Insufficiency: There is no apparent correlation between renal function (measured by creatinine clearance) and exposure (measured by AUC) to valsartan in patients with different degrees of renal impairment. Valsartan has not been studied in patients with severe impairment of renal function (creatinine clearance <10 mL/min). Valsartan is not removed from the plasma by hemodialysis.

In a study in individuals with impaired renal function, the mean elimination half-life of hydrochlorothiazide was doubled in individuals with mild/moderate renal impairment (30< CrCl <90 mL/min) and tripled in severe renal impairment (CrCl  $\leq$ 30 mL/min), compared to individuals with normal renal function (CrCl >90 mL/min) [see Use in Specific Populations].

Hepatic Insufficiency: On average, patients with mild-to-moderate chronic liver disease have twice the exposure (measured by AUC values) to valsartan of healthy volunteers (matched by age, sex, and weight) [see Use in Specific Populations].

### **Drug Interactions**

## Hydrochlorothiazide:

Drugs that alter gastrointestinal motility: The bioavailability of thiazide-type diuretics may be increased by anticholinergic agents (e.g., atropine, biperiden), apparently due to a decrease in

gastrointestinal motility and the stomach emptying rate. Conversely, pro-kinetic drugs may decrease the bioavailability of thiazide diuretics.

Cholestyramine: In a dedicated drug interaction study, administration of cholestyramine 2 hours before hydrochlorothiazide resulted in a 70% reduction in exposure to hydrochlorothiazide. Further, administration of hydrochlorothiazide 2 hours before cholestyramine resulted in 35% reduction in exposure to hydrochlorothiazide.

Antineoplastic agents (e.g., cyclophosphamide, methotrexate): Concomitant use of thiazide diuretics may reduce renal excretion of cytotoxic agents and enhance their myelosuppressive effects.

## 5.3. Preclinical safety data

The potential toxicity of the valsartan - hydrochlorothiazide combination after oral administration was investigated in rats and marmosets in studies lasting up to six months. No findings emerged that would exclude the use of therapeutic doses in man.

The changes produced by the combination in the chronic toxicity studies are most likely to have been caused by the valsartan component. The toxicological target organ was the kidney, the reaction being more marked in the marmoset than the rat. The combination led to kidney damage (nephropathy with tubular basophilia, rises in plasma urea, plasma creatinine and serum potassium, increases in urine volume and urinary electrolytes from 30 mg/kg/day valsartan + 9 mg/kg/day hydrochlorothiazide in rats and 10 + 3 mg/kg/d in marmosets), probably by way of altered renal haemodynamics. These doses in rat, respectively, represent 0.9 and 3.5–times the maximum recommended human dose (MRHD) of valsartan and hydrochlorothiazide on a mg/m² basis. These doses in marmoset, respectively, represent 0.3 and 1.2–times the maximum recommended human dose (MRHD) of valsartan and hydrochlorothiazide on a mg/m² basis. (Calculations assume an oral dose of 320 mg/day valsartan in combination with 25 mg/day hydrochlorothiazide and a 60-kg patient.)

High doses of the valsartan - hydrochlorothiazide combination caused falls in red blood cell indices (red cell count, haemoglobin, haematocrit, from 100 + 31 mg/kg/d in rats and 30 + 9 mg/kg/d in marmosets). These doses in rat, respectively, represent 3.0 and 12 times the maximum recommended human dose (MRHD) of valsartan and hydrochlorothiazide on a mg/m² basis. These doses in marmoset, respectively, represent 0.9 and 3.5 times the maximum recommended human dose (MRHD) of valsartan and hydrochlorothiazide on a mg/m² basis. (Calculations assume an

oral dose of 320 mg/day valsartan in combination with 25 mg/day hydrochlorothiazide and a 60-kg patient).

In marmosets, damage was observed in the gastric mucosa (from 30 + 9 mg/kg/d). The combination also led in the kidney to hyperplasia of the afferent aterioles (at 600 + 188 mg/kg/d in rats and from 30 + 9 mg/kg/d in marmosets). These doses in marmoset, respectively, represent 0.9 and 3.5 times the maximum recommended human dose (MRHD) of valsartan and hydrochlorothiazide on a mg/m² basis. These doses in rat, respectively, represent 18 and 73 times the maximum recommended human dose (MRHD) of valsartan and hydrochlorothiazide on a mg/m² basis. (Calculations assume an oral dose of 320 mg/day valsartan in combination with 25 mg/day hydrochlorothiazide and a 60-kg patient).

The above mentioned effects appear to be due to the pharmacological effects of high valsartan doses (blockade of angiotensin II-induced inhibition of renin release, with stimulation of the renin-producing cells) and also occur with ACE inhibitors. These findings appear to have no relevance to the use of therapeutic doses of valsartan in humans.

The valsartan - hydrochlorothiazide combination was not tested for mutagenicity, chromosomal breakage or carcinogenicity, since there is no evidence of interaction between the two substances. However, these tests were performed separately with valsartan and hydrochlorothiazide, and produced no evidence of mutagenicity, chromosomal breakage or carcinogenicity.

In rats, maternally toxic doses of valsartan (600 mg/kg/day) during the last days of gestation and lactation led to lower survival, lower weight gain and delayed development (pinna detachment and ear-canal opening) in the offspring. These doses in rats (600 mg/kg/day) are approximately 18 times the maximum recommended human dose on a mg/m² basis (calculations assume an oral dose of 320 mg/day and a 60-kg patient). Similar findings were seen with valsartan/hydrochlorothiazide in rats and rabbits. In embryo-fetal development (Segment II) studies with valsartan/hydrochlorothiazide in rat and rabbit, there was no evidence of teratogenicity; however, fetotoxicity associated with maternal toxicity was observed.

#### 6. PHARMACEUTICAL PARTICULARS

#### 6.1.List of Excipients

**Core Tablet:** The excipients such as Microcrystalline Cellulose (Vivapur 102), Crospovidone (Kollidon CL), Magnesium Stearate, Colloidal Silicon Dioxide (Aerosil 200) and Purified water.

## Film Coating:

Opadry Brown 02F565012

## 6.2.Incompatibilities

Not applicable

### 6.3.Shelf life

2 years

## 6.4. Special precautions for storage

Store below 30°C, protect from moisture.

# 6.5. Nature and contents of

container Blister pack

### 10's Alu/Alu Blister:

**Lidding foil:** 0.025x123 mm, plain aluminium foil (Hard tampered) with 7 GSM HSL coating on bright side.

**Forming foil :** Cold form foil 123 mm (60 microns PVC/45 microns Aluminium foil/ 25 microns OPA)

## 6.6. Special precautions for disposal

Any unused product or waste material should be disposed of in accordance with local requirements

#### 7. MARKETING AUTHORISATION HOLDER AND MANUFACTURING SITE ADDRESSES

#### 7.1. Name and Address of Manufacturer

Name: Hetero Labs Limited (Unit-V)

Address: TSIIC Formulation SEZ, Survey No. 439, 440, 441 & 458,

Polepally (Village), Jadcherla (Mandal), Mahaboob Nagar (Dist) – 509301,

Country: Telangana, India

Telephone: 0091-8542-238400 Telefax : 0091-8542-238404

# 7.2. Name and Address of Principal

Name : Hetero Labs Limited

Business Address : 7-2-A2, Hetero Corporate,

Industrial Estates, Sanath Nagar, Hyderabad-500 018

Country : Telangana, INDIA

Telephone : +91-040-23704923/24

### **8. REGISTRATION NUMBER**

TAN 22 HM 0185

## 9. DATE OF FIRST AUTHORIZATION/ RENEWAL OF AUTHORIZATION

04<sup>th</sup> May, 2022

## **10.DATE OF REVISION OF THE TEXT**

## 11.CATEGORY FOR DISTRIBUTION

PP – 'Prescription preparation'.